Directional analysis of coherent oscillatory field potentials in the cerebral cortex and basal ganglia of the rat.

نویسندگان

  • Andrew Sharott
  • Peter J Magill
  • J Paul Bolam
  • Peter Brown
چکیده

Population activity in cortico-basal ganglia circuits is synchronized at different frequencies according to brain state. However, the structures that are likely to drive the synchronization of activity in these circuits remain unclear. Furthermore, it is not known whether the direction of transmission of activity is fixed or dependent on brain state. We have used the directed transfer function (DTF) to investigate the direction in which coherent activity is effectively driven in cortico-basal ganglia circuits. Local field potentials (LFPs) were simultaneously recorded in the subthalamic nucleus (STN), globus pallidus (GP) and substantia nigra pars reticulata (SNr), together with the ipsilateral frontal electrocorticogram (ECoG) of anaesthetized rats. Directional analysis was performed on recordings made during robust cortical slow-wave activity (SWA) and "global activation". During SWA, there was coherence at approximately 1 Hz between ECoG and basal ganglia LFPs, with much of the coherent activity directed from cortex to basal ganglia. There were similar coherent activities at approximately 1 Hz within the basal ganglia, with more activity directed from SNr to GP and STN, and from STN to GP rather than vice versa. During global activation, peaks in coherent activity were seen at higher frequencies (15-60 Hz), with most coherence also directed from cortex to basal ganglia. Within the basal ganglia, however, coherence was predominantly directed from GP to STN and SNr. Together, these results highlight a lead role for the cortex in activity relationships with the basal ganglia, and further suggest that the effective direction of coupling between basal ganglia nuclei is dynamically organized according to brain state, with activity relationships involving the GP displaying the greatest capacity to change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain state-dependence of coherent oscillatory activity in the cerebral cortex and basal ganglia of the rat

The nature of the coupling between neuronal assemblies in the cerebral cortex and basal ganglia (BG) is poorly understood. We tested the hypothesis that coherent population activity is dependent on brain state, frequency range and/or BG nucleus using data from simultaneous recordings of electrocorticogram (ECoG) and BG local field potentials (LFPs) in anesthetized rats. The coherence between EC...

متن کامل

Brain state-dependency of coherent oscillatory activity in the cerebral cortex and basal ganglia of the rat.

The nature of the coupling between neuronal assemblies in the cerebral cortex and basal ganglia (BG) is poorly understood. We tested the hypothesis that coherent population activity is dependent on brain state, frequency range, and/or BG nucleus using data from simultaneous recordings of electrocorticogram (ECoG) and BG local field potentials (LFPs) in anesthetized rats. The coherence between E...

متن کامل

Abnormal functional connectivity between motor cortex and pedunculopontine nucleus following chronic dopamine depletion.

The activity of the basal ganglia is altered in Parkinson's disease (PD) as a consequence of the degeneration of dopamine neurons in the substantia nigra pars compacta. This results in aberrant discharge patterns and expression of exaggerated oscillatory activity across the basal ganglia circuit. Altered activity has also been reported in some of the targets of the basal ganglia, including the ...

متن کامل

Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat.

Local field potentials (LFPs) recorded from the subthalamic nucleus (STN) of untreated patients implanted with stimulation electrodes for the treatment of Parkinson's disease (PD) demonstrate strong coherence with the cortical electroencephalogram over the beta-frequency range (15-30 Hz). However, studies in animal models of PD emphasize increased temporal coupling in cortico-basal ganglia circ...

متن کامل

Ketamine-Induced Oscillations in the Motor Circuit of the Rat Basal Ganglia

Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 562 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2005